Heart Structure-Specific Transcriptomic Atlas Reveals Conserved microRNA-mRNA Interactions
نویسندگان
چکیده
MicroRNAs are short non-coding RNAs that regulate gene expression at the post-transcriptional level and play key roles in heart development and cardiovascular diseases. Here, we have characterized the expression and distribution of microRNAs across eight cardiac structures (left and right ventricles, apex, papillary muscle, septum, left and right atrium and valves) in rat, Beagle dog and cynomolgus monkey using microRNA sequencing. Conserved microRNA signatures enriched in specific heart structures across these species were identified for cardiac valve (miR-let-7c, miR-125b, miR-127, miR-199a-3p, miR-204, miR-320, miR-99b, miR-328 and miR-744) and myocardium (miR-1, miR-133b, miR-133a, miR-208b, miR-30e, miR-499-5p, miR-30e*). The relative abundance of myocardium-enriched (miR-1) and valve-enriched (miR-125b-5p and miR-204) microRNAs was confirmed using in situ hybridization. MicroRNA-mRNA interactions potentially relevant for cardiac functions were explored using anti-correlation expression analysis and microRNA target prediction algorithms. Interactions between miR-1/Timp3, miR-125b/Rbm24, miR-204/Tgfbr2 and miR-208b/Csnk2a2 were identified and experimentally investigated in human pulmonary smooth muscle cells and luciferase reporter assays. In conclusion, we have generated a high-resolution heart structure-specific mRNA/microRNA expression atlas for three mammalian species that provides a novel resource for investigating novel microRNA regulatory circuits involved in cardiac molecular physiopathology.
منابع مشابه
A Tri-Component Conservation Strategy Reveals Highly Confident MicroRNA-mRNA Interactions and Evolution of MicroRNA Regulatory Networks
MicroRNAs are small non-coding RNAs that can regulate expressions of their target genes at the post-transcriptional level. In this study, we propose a tri-component strategy that combines the conservation of microRNAs, homology of mRNA coding regions, and conserved microRNA binding sites in the 3' untranslated regions to discover conserved microRNA-mRNA interactions. To validate the performance...
متن کاملDecoding the Cardiac Message The 2011 Thomas W . Smith Memorial
This review reflects and expands on the contents of my presentation at the Thomas W. Smith Memorial Lecture at American Heart Association Scientific Sessions, 2011. “Decoding the cardiac message” refers to accumulating results from ongoing microRNA research that is altering longstanding concepts of the mechanisms for, and consequences of, messenger RNA (mRNA) regulation in the heart. First, I p...
متن کاملDecoding the cardiac message: the 2011 Thomas W. Smith Memorial Lecture.
This review reflects and expands on the contents of my presentation at the Thomas W. Smith Memorial Lecture at American Heart Association Scientific Sessions, 2011. "Decoding the cardiac message" refers to accumulating results from ongoing microRNA research that is altering longstanding concepts of the mechanisms for, and consequences of, messenger RNA (mRNA) regulation in the heart. First, I p...
متن کاملNovel miRNA-mRNA interactions conserved in essential cancer pathways
Cancer is a complex disease in which unrestrained cell proliferation results in tumour development. Extensive research into the molecular mechanisms underlying tumorigenesis has led to the characterization of oncogenes and tumour suppressors that are key elements in cancer growth and progression, as well as that of other important elements like microRNAs. These genes and miRNAs appear to be con...
متن کاملMicroRNA-Target Network Inference and Local Network Enrichment Analysis Identify Two microRNA Clusters with Distinct Functions in Head and Neck Squamous Cell Carcinoma
MicroRNAs represent ~22 nt long endogenous small RNA molecules that have been experimentally shown to regulate gene expression post-transcriptionally. One main interest in miRNA research is the investigation of their functional roles, which can typically be accomplished by identification of mi-/mRNA interactions and functional annotation of target gene sets. We here present a novel method "miRl...
متن کامل